

Bang! Or: "How To Make A Demo"

"Use your faults, use your defects,
then you're gonna be a star!"

A look inside a price winning demo for
the Atari 2600 VCS

Hackover 2014 - 2014-10-26 - 13:00

What Is A Demo?

Aesthetic appealing program

Definitively an art form

Some kind of digital graffiti,
only with animation and music

Usually with none or very few interactions

Let's try an example: the demo in question

What Is Needed For A Demo?

 Music
 Very important

 Had luck, a very good musician found me

 Graphics
 Hard to separate from code on the VCS

 There were a lot of guys helping out here

 Code

 Coordinator / "Director"

What To Do With A Demo?

Demos are usually coded to be released at demo-
parties.

"Bang!" was intended for and released at Revision,
the biggest demo-only-party in Germany. Bigger
venues are not in Germany and not demo-only.

To me it's like the inofficial national championships.

Music

Good music in a demo makes a difference

Music on VCS almost always included coding

There is Music Kit by Paul Slocum:
no coding anymore, but still need to know some

details about coding, since the music is still defined
in assembler tables

 → Write an editor that creates those tables

Tool #1, "Music Editor":
apefat

A Poor Excuse For A Tracker

The Hardware

Before going into the effects of the demo parts,
some background info is needed.

What is the hardware capable of?

What are the limitations?

Atari 2600 VCS: The Hardware

The Atari 2600 VCS mainly consists of three chips

CPU, a MOS 6507 (6502 with less pins)

TIA, the Television Interface Adapter

RIOT, RAM/Input/Output/Timer

 → RAM: 128 bytes, 1 timer, no interrupts

Bang! utilized an additional 128 bytes of RAM
hosted in the cartridge

Called SuperChip-RAM (SC-RAM)

Graphical Capabilities

Graphic is done by TIA

TIA does only generate graphics but does not "run"
anything

TIA is driven by the CPU via memory mapped I/O

CPU runs at ~1.19MHz

The CPU: 6507

6 registers

A: multi-purpose accumulator (8 bit)

X: index register (8 bit)
Y: index register (8 bit)

PC: program counter (16 bit internal, little endian,
external bus is 13 bit only)

SP: stack pointer (8 bit) (offset to $0100)

ST: processor status (8 bit)

Instructions take 1 - 3 bytes and 2 - 7 clock cycles

Basic Trick #1:
Fast Mathematical Functions

Typical mathematical function f: n m→

In our case n and m are 8bit values, CPU registers

Fastest implementation: table of 256 bytes

Typical example: sine/cosine wave

LDA cosine_table,X can be read as A=cos(X)

Disadvantage: costs expensive memory (ROM)

Advantage: very extremely fast

Frame

Scanlines (262 N
TSC

 / 312 PAL)

Overscan (30 NTSC / 36 PAL)

Display

Vertical sync + vertical blank (40 NTSC / 48 PAL)

228 color clock cycles

Horizontal blank
(68 Color clocks)

"Drawable area"
(160 color clock cycles)

(192 lines NTSC / 228 lines PAL)

76 CPU clock cycles (228 / 3)

The Big Difference

These images show an experiment: write random
data to graphics hardware and run an endless loop.

Atari 2600 VCSCommodore 64

"Racing the beam"

Instead of "running" the graphics frame by frame,
the image is drawn line by line

If nothing is changed, the next line is drawn like the
one before

There are no registers for Y-components

Example: a player sprite size is 8 bit wide and as
high as the screen

You need to tell the TIA what to paint while it is
painting! This is called "Racing the beam"

Playfield graphics (1)

Resolution: 40 bits – 4 color clock cycles per bit

Registers responsible for playfield generation:

COLUPF, COLUBK: color

PF0, PF1, PF2: data

How to squeeze this 40 bit resolution into 3 bytes?

CTRLPF: control register

– Bit 0: 1=reflect playfield, 0=repeat playfield

– Bit 1: 1=use player colors, 0=use playfield color

– Bit 2: 1=playfield over sprites, 0=sprites over playfield

Playfield graphics (2)

The data registers in depth:

– PF0: ABCD
– PF1: EFGH IJKL
– PF2: MNOP QRST

So the playfield data are only 20 bits that can be
Mirrored: DCBAEFGHIJKLTSRQPONMMNOPQRSTLKJIHGFEABCD

Repeated: DCBAEFGHIJKLTSRQPONMDCBAEFGHIJKLTSRQPONM

Changed: DCBAEFGHIJKLTSRQPONMdcbaefghijkltsrqponm

Note: Intuitive and straight forward to code for, well this isn't

Sprites

The TIA has 5 sprites:
– 2 player sprites (8 bit data)
– 2 missile sprites (1 bit on/off)
– 1 ball sprite (1 bit on/off)

Missile sprite positions can be
linked to player positions or
positioned independently

Hardware was designed for
running

Tank (Combat)

Pong (Video Olympics)

Sprites: size and repetition

The player sprites can be
repeated or stretched in 7
different ways

Mirroring of player sprites
is also possible

Ball and missile sprites
can be defined being in
size of 1, 2, 4 or 8 clock
cycles

48 Pixel Sprite (1)

We have two player sprites, each 8 pixels wide

Each can be repeated three times with an 8 pixel gap

They can be positioned to form one big 48 pixel sprite

The biggest problem is to change the graphics data at
the correct time

Using interlacing even 96 pixels are possible, but
flickering occurs

Sprites placement (1)

How are sprites placed on the screen?

Y: enable before beam reaches position

X: more complicated, though

There are registers to reset the sprite position, no
value taken

"Reset" has a slightly different interpretation here:

Not reset to position 0, but to current X position of
beam

Sprites placement (2)

TIA clock 3 times as fast as CPU clock

Fine-tuning the position:

4 bit signed motion registers (1 per sprite)
can move -8 to +7 color clock cycles
negative moves right, positive left
only prepares moving the sprite

Writing to another register moves all sprite at once
as implied by motion registers

Colors (1)

4 Color registers: background, playfield, 2 players

Each color can be picked out of a palette of 128

Colors (2)

COLUBK
– background

COLUPF
– playfield, ball

COLUP0
– player 0, missile 0
– playfield left half (score mode)

COLUP1
– player 1, missile 1
– playfield right half (score mode)

A Good Atari 2600 VCS Demo?

Before we now through the parts of the demo, let's
ask this difficult question:

What makes Atari 2600 VCS demo a good demo?

"A good Atari 2600 VCS demo doesn't look like an
Atari 2600 VCS demo at all!" – Jac!

Stella Developer Colors

 Each screen is shown twice
 Correct colors (read from color registers)

 Colors describing what hardware is used

Dark Bright

Red Player 0 (8 bit) Missile 0 (1 bit)

Yellow Player 1 (8 bit) Missile 1 (1 bit)

Blue Playfield (20+1 bit) Ball (1 bit)

Grey/White Background "Bad Lines"

Intro 1: Gameboy-Like Logo

Graphics calculated on first frame, 127 bytes in
ROM, color values are calculated on the fly

Intro 2: Film Countdown

Using all sprite hardware, ball sprite for lens-fuzz,
missile sprites for line, player sprites for number.
Missile sprites are not symmetric because of sprite
width.

Intro 3: Edith Piaf

Moving sprites 8 pixels back and forth, using a
corner case of the TIA for moving left.

Intro 4: AtariAge Logo

Basically same as "Film Countdown", playfield
graphics used as background, sprites overlapping to
"smooth" edges.

Intro 5: Pouët.net Logo

Using sprites over playfield to create the illusion of
a higher resolution.

Intro 6: MEGA Logo

49(!) pixel sprite, additionally using ball sprite. Of
all intro logos, this is the most complex code, best
technical achievement, only real animation, and
closest to the original logo.

Intro 7: XAYAX Logo

Using sprites and replication to create the illusion of
high resolution graphics.

The name XAYAX was chosen because it's very easy
to display on the VCS.

Intro 8: Bang! Title

Using SC-RAM for the "falling" sprite to drop the
need for a compare, since the playfield graphics
take up most of the rastertime.

Chapter 1-1: 48 Pixel Scroll

Starting of as a rather typical part.

Typical 48 pixel scroller.

Chapter 1-2: 160(!) Pixel Scroll

Since only 48 pixels can be shown per line, use 3 of
those on different positions to form a some kind of
stairs. A bit tricky was the "removing" of playfield
data used as "turning blocks". SC-RAM needed.

Chapter 2-1: Matrix

Height: 41 lines

Using disadvantages of the VCS to my advantage

Calculating next line while leaving registers
unchanged, using playfield repeat

Chapter 2-2: Bresenham

Implementation of the Bresenham line algorithm
VCS style: made sure that the angle is not > 45°,
using HMOVE to move both sprites at once. XAYAX
down-logo is written to SC-RAM, because it's used
later on with different spacing.

Chapter 3: Rotate Text

Complex mathematics done using macros and
tables. Expanded player sprite used for letters.

Chapter 4-1: 1D Plasma

A fixed point cosine table, and a good color table,
add different phases convert the result into a color,
all tables are 256 bytes to utilize the "rollover" of
index registers. Again "XAYAX" can be displayed
easily, read from SC-RAM.

Basic Trick #2: Color Table

Let's take a look at the available colortable:
the 104 colors of PAL are okay, but order is bad
compared to NTSC

A Not So Good Color Table

All 256 possible values for colors, a lot of gray and
the ordering is unhandy compared to NTSC

A Better Color Table

Reorder colors (hi-nibble) to resemble the NTSC
"layout" using base colors that are closest available

Best Color Table So Far

Reorder colors (lo-nibble) for a "fade in and out"-
effect instead of colors just getting brighter

Chapter 4-2: 2D Plasma

Part of the code is copied into RAM for modification
and run there for speed purpose. Illusion of panels
being 16 pixel wide, black lines hide the fact that
they are 15, 18 and 15 pixels wide.

Chapter 5-1: Amiga Disk

Typical 96 pixel interlace sprite, using same routine
as for Edith Piaf. Note the hiding of the "sprite move
lines" by using black playfield graphics.

Chapter 5-2: Amiga Ball

48 pixel sprite with 6 animation frames + 1 for
Revision logo. Cosine is pre-calculated this time.

Chapter 5-3: Amiga Guru

Originally intended as "Guru Meditation", there was
no way to squeeze the message into 48 pixels, so I
tried to cover this with a pun. Code shared with C64
load.

Chapter 6-1: C64 Loading

It's a hard time to create something resembling the
C64 without having bitmaps, using playfield to cover
up "unreachable" areas. Tape loading is an exact
replication.

Chapter 6-2: C64 Open Border

Reusing XAYAX down-logo, again. This time for
three registers: 8 bits of playfield and both player
sprites, using mirror effects of the VCS.

Chapter 6-3: C64 Multiplex

The technically most challenging part of the demo:
multiplexing sprites. It took five attempts in three
weeks to get this one running. Concession that had
to be made: only center 104 pixels can be used.

Chapter 7-1: Impossbile Mission Men

Something to hold against the Armalyte sprites of
aTaRSI. Big sprites were created by moving and
changing sprites line by line (need a tool). Three →
men are shown due to hardware sprite replication.

Tool #2, "Graphics Editor"
VCS_GFX_Codegen

Chapter 7-2: Orion Boarding

Impossible Mission Men were downsized using a
graphics program, post-pixeled by hand. Resembling
the starting scene of "Raumpatroullie Orion", a b/w
sci-fi TV show.

Chapter 7-3: Orion Greetings

Exploiting a hardware bug, first used in Cosmic Ark,
using only one sprite. I was proud doing three
sprites, then came Thomas Jentzsch in a post of
AtariAge using all five. SC-RAM used for "striping"
logos in and out.

Chapter 8: Snake

This part shaped itself up over a longer period of
time. The question was: how fast can a 48 pixel
sprite be repositioned? (tool needed) SC-RAM →
used, because 2x80 bytes are needed to store
movement data between lines.

Tool #3, "Rasterpaper":
fridgegrid

Chapter 9: The Girl, "Donna"

Use playfield graphics, "enhanced" with sprites here
and there. Code and graphics data were created
hand in hand. Mirrored image in mandatory. Moving
colors were pre-calculate and stored in SC-RAM.

The First Draft And The Last Stage

Some pixels
are encoded
colors or
sprite
movement, on
the right side
there is the
sprite data.

Deft, I'm sorry!

Outro 1: Film Outro

Typical 96 pixel sprite. Lens-fuzz is interesting:
moving 8 pixel to left also moves ball sprite, has to
be counter-acted with setting sprite movement.

Outro 2: End Of Film Gag

Using 32 pixel sprite for "searching" text, playfield
color changed right on time for text color.

Sprite priority changed in the center.

Outro 3: QR Code

Two routines for diplaying playfield data. QR code
asymmetrical, XAYAX is mirrored. 2014 is a sprite.

Thanks For Listening

Also thanks to:

Skyrunner, Deft, Veto, Titus
The folks at AtariAge.com
Michael Steil
Ninja / The Dreams

Questions?

Meet me at AtariAge.com,
#vcsdev or at a demo-party.
http://xayax.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

