

Let Me Show You Something

How Tinkering With A 65C02
Led To Building A Computer

by Sven Oliver ('SvOlli') Moll

Motivation

 Talk about first home computers in two months

 Focus is on 6502 based machines

 Reading about using a Raspberry Pi Pico / RP2040 to interface
with classic machines I want todo something like this, too→

 Maybe working with a 65C02 first hand would be fun?

Alternatives: Retro Machines

 Apple 1 clones:
 Board replicas with original chips
 Replica 1
 Mega6502

 KIM 1 clones:
 Board replicas replacing the 6530 RRIOTs with 6532 RIOTs
 KIM UNO

 PET clones, TIM 1 recreation

Alternatives: Machines In Active Development

 Commander X16

 Steckschwein

 Ben Eater's 65C02 on a breadboard

 Pico Computer

 65uino

 SBCs by Western Design Center
 W65C02SBX, W65C134SBX, W65C816SBX, W65C265SBX, etc.

Alternatives: Downsides

 Most are not available at the moment

 Expensive

 Most are kits big effort to set up→

 Still a bit "too high-level" for showing off how the CPUs works

 No machine fits the idea of tinkering

 → How about building an own computer?

Requirements

 More a toy than a full featured computer

 Quick: two months

 Learn about 6502 show CPU in action→

 Keep it simple, stupid easy to solder→

 Open source

 Expandable / modular

 Milestones: run like old computer, run diagnostic monitor

 Cheap: €10 €15→

65C02 (1)

 Required pins:
 VSS (GND), VDD (VCC)
 A0-A15, D0-D7
 RWB
 PHI2
 IRQB / NMIB / RESB
 RDY

 32 pins

65C02 (2)

 Not required pins:
 NC, PHI1O, PHI2O
 SOB: Set Overflow
 VPB: Vector Pull
 BE: Bus Enable
 MLB: Memory Lock
 SYNC: Sync opcode fetch

 Some are even recommended
not to use

Raspberry Pi Pico

 Cheap versatile microcontroller board

 Available for ~$4

 26 GPIO pins

 2MB flash

 USB type micro-B connector

 Optional WiFi

 Driven by RP2040 microcontroller

RP2040 microcontroller

 Cheap versatile microcontroller

 Available for ~$1

 30 GPIO pins

 → 4 GPIOs are "held back" for LED or WiFi

Chinese Clone: "Purple Board"

 Same microcontroller

 Available for ~$2.50

 30 GPIO pins

 16M flash

 USB type C connector

 Different pinout

 Also: different power supply

Architecture (1)

 Just connect 65C02 to RP2040 board

 Power supplied by RP2040 board

 Main interface: USB UART

 How to enable tinkering / expanding?
 expose bus→

 like in a 1970s computer?→

Architecture (2)

 Passive backplane to connect everything

 65C02 on one card

 RP2040 based board on the other card

 Provide more then two slots for other cards

 → and just call it a computer

Which Machine To Implement?

JOLT Computer
(1975-12)

 RAM: 576 bytes

 ROM: 1024 bytes

 I/O: PIA 6820

 I/O: RRIOT 6530-004

 UI: terminal

Apple Computer 1
(1976-09)

 RAM: 4096 bytes

 ROM: 256 bytes

 I/O: PIA 6820

 UI: terminal
simulating CRT
+ keyboard

MOS KIM-1
(1976-Q2)

 RAM: 1152 bytes

 ROM: 2048 bytes

 I/O: RRIOT 6530-002

 I/O: RRIOT 6530-003

 UI: terminal
+ 6 digit display
+ keypad

Sorbus Computer

 Pick a name some kind of fruit→

 Is uses a Raspberry to run like an Apple

 Sorbus (German: "Vogelbeere")

 Mother always told me: "Don't eat"
 so don't use it for primary purpose→

 But... as a kid playing with those
berries... I had a lot of fun

Image: Martin Olsson / Wikipedia

Images

Also A System To Teach

 MCP:
Monitor Command Prompt

 Loosely based on monitor of
the JOLT Computer and also
monitor software for later
machines like C64

 Run at 1Hz to 0.1MHz

 Available commands
 help: display help
 freq: set frequency
 cpu: show cpu type
 reset, irq, nmi
 s: run number of steps
 m: dump memory
 f: fill memory
 :: write to memory (colon)

Timing Can Be Tricky

Diagram taken from WDC W65C02 datasheet, modified for readablity

Still A Lot That Can Be Done

 Improve the MCP with disassembler and direct-assembler

 Implement (Super) JOLT Computer

 Implement KIM-1 design the hex input/output PCB→

 Implement 65816 "chipset" for > 64k RAM

 Create a PCB for a 6532

 Create a PCB for a General Instruments AY-3-8910 (aka Yamaha
YM2149F) soundchip (or similar)

Thanks & Disclaimer

 Thanks
 My dad for soldering all 90 boards with over 12000 solder joints
 Jedi for looking over my PCB designs

 Disclaimer
 I created this computer

 to have a toy…
 It's open source so that you can build your own

 and improve it…
 However: I will not produce and sell them in a larger scale

 except for the ones available for this talk / workshop…

Lessons

 Here a few things to do

 Just type in the commands after the ">" prompt

 After that, let's discuss, what we see there

Output Explained

 100:0433 r fe R >

 "100:": number of steps left to execute

 "0433" current value of address bus

 "r": state of read/write line (either 'r' or 'w')

 "fe": current value on data bus

 "R ": Reset line low (active) (can also be "N"MI or "I"RQ)

 ">": command starts after this prompt

Lesson 1: Reset And NOP

 > f 0000 FFFF EA

 > reset 5

 > s 20

Lesson 2: Another Type Of NOP

 > f 0000 FFFF 33

 > reset 5

 > s 20

Lesson 3: A Simple Program

 Power off an on again

 > f 1000 1100 00

 > : FFFC 00 04

 > reset 5

 > s 345

 > freq 1000

 > freq 5

 > m 1000

Lesson 4: Subroutine

 > : FFFC 03 04

 > reset 5

 > s 35

Lesson 4: Data On Stack

 > : FFFC 06 04

 > reset 5

 > s 30

Lesson 6: Interrupt Via IRQ Line

 > : FFFC 09 04

 > reset 5

 > s 30

 > irq 9

 > s 35

Lesson 7: Interrupt Via BRK Instruction

 > : FFFC 0C 04

 > reset 5

 > s 60

Lesson 8: Learn How To Use An Apple Computer 1

 Insert USB cable with BOOTSEL button pressed
 device now appears as mass storage→

 Copy "apple1.uf2" to "RPI-RP2"
 the device will automatically reboot→

 Run terminal software again, "`" key is reset

 Let's explore WozMon

 Let's do a "Hello world" in BASIC

